Does the Facile Reductive Rearrangement of 2-Allyloxycyclohexenone with Bu₃SnH Occur by a **Radical-Accelerated Claisen Rearrangement or a Stannyloxy-Accelerated Claisen Rearrangement?**

Dennis P. Curran* and Yoshinori Nishii

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260

Received May 19, 1999

The synthetic usefulness of 3,3-sigmatropic shifts is dramatically expanded by accelerating effects of certain substituents, and these substantial accelerating effects have challenged theory to provide satisfactory explanations and predictions.¹ Anion-accelerated 3,3-sigmatropic shifts are especially prominent, but cationaccelerated versions are also known. In contrast, we are aware of no documented radical-accelerated 3,3-sigmatropic shifts.² This is surprising at first glance since the energetic price of bondbreaking accounts for a significant part of the activation energy of a 3,3-sigmatropic rearrangement and since radical and radical anion substituents are well known to weaken adjacent bonds.³ Indeed, β -fragmentation is one of the most fundamental reactions of radicals and radical anions (see eq 1).

Very significant accelerations would be needed to observe a sigmatropic shift within the relatively short lifetime of a transient radical. Radical anions might hold better promise since they can persist for longer times. In this regard, we were most intrigued by a recent report by Enholm and co-workers of a "ketyl-radical anion triggered 3,3-sigmatropic shift".4 In a key example, these workers observed that reduction of 2-allyloxycyclohexenone (1)with tributyltin hydride at high concentration in benzene at 80 °C with AIBN provided 2-allyl-2-hydroxylcyclohexanone (2) in 54% yield (Scheme 1). The generality of the reaction was demonstrated by a number of diverse examples.

Enholm and co-workers proposed the mechanism shown in the upper path of Scheme 1 to account for the facile reductive rearrangement of 1 to 2. Addition of a tin radical to 1 provides the "ketyl radical-anion" 3, which undergoes very rapid rearrangement to α-keto radical 4. Abstraction of hydrogen from Bu₃-SnH by 4 provides the product tin ether 5, which hydrolyzes to the alcohol 2 (this pathway is hereafter called the "radical-Claisen mechanism"). The rearrangement of 3 to 4 is the key step of Enholm's mechanism, and this must be exceptionally rapid since the lifetime of radical 3 must be short at the high tin hydride

Scheme 1

concentrations employed.5 An alternative mechanism for the conversion of 3 to 5 reverses the rearrangement and hydrogentransfer steps. Reduction of **3** provides α -allyloxy stannyl enol ether 6, which undergoes Claisen rearrangement to give 5. In a pioneering paper in 1985, Koreeda and Luengo generated enol ethers, enol silyl ethers, and enolate intermediates related to 6 by deprotonation and showed that they underwent surprisingly facile Claisen rearrangements to products related to 5 (this route is hereafter called the "stannyloxy-Claisen mechanism").6

Enholm and co-workers considered but dismissed the stannyloxy-Claisen mechanism on the basis of two lines of evidence: (1) they were never able to observe intermediates related to 6(although their formation is well precedented by Enholm's prior work on enone reductions⁷) and (2) competitive experiments suggested that the allyloxy compound 1 was more reactive than a saturated propyloxy analog. The negative evidence along line 1 is unsatisfying since 6 might have rearranged faster than is was formed, and we felt that the competitive experiments along line 2 were not optimally designed.8 If Enholm's radical-Claisen mechanism is correct, then this work could be a seminal advance in radical- and radical-anion-accelerated sigmatropic shifts. We therefore designed a series of experiments that would differentate the two mechanisms. We report herein the results of these experiments, which strongly support the stannyloxy-Claisen (Koreeda) mechansim.

Stereochemical labeling experiments should be useful in differentiating the two mechanisms. For example, a reaction of 1 conducted with Bu₃SnD can give two stereoisomers of 5. In the radical-Claisen mechanism, stereoselection is determined in the radical reduction step⁹ ($4 \rightarrow 5$), while stereoselection occurs in the 3,3-sigmatropic rearrangement $(6 \rightarrow 5)$ in the stannyloxy-Claisen mechansim. Since H and D are nearly identical in size, no stereoselection is expected in the stannyloxy-Claisen mechanism, while the level of stereoselection in the radical-Claisen mechansim is, a priori, unclear (but could only be 1/1 fortuitously).

We first conducted the reduction of 1 under Enholm's conditions with Bu₃SnD to provide alcohol 2 (48%). This was then silvlated under standard conditions to provide silvl ether 7 as a 1/1 mixture of α/β stereoisomers (eq 2). To assess the stereoselectivity of stannyl ether radical 4, we initially generated

⁽¹⁾ Bronson, J. J.; Danheiser, R. L. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 999. Wipf, P. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 827. Gajewski, J. J. Acc. Chem. Res. 1997, 30, 219.

⁽²⁾ However, radicals and radical ions are frequently postulated as intermediates (as opposed to substituents). See, for example: Bauld, N. L. In Advances in Electron-Transfer Chemistry; Mariano, P. S., Ed.; Jai Press Inc.: Greenwich, CT, 1992; Vol. 2, p 1.

 ^{(3) (}a) Zhang, X. M. J. Org. Chem. 1998, 63, 1872. (b) Zhao, Y. Y.;
Bordwell, F. G. J. Org. Chem. 1996, 61, 6623.
(4) Enholm, E. J.; Moran, K. M.; Whitley, P. E.; Battiste, M. A. J. Am.

Chem. Soc. 1998, 120, 3807.

⁽⁵⁾ Estimates for acceleration are as high as 1010; see Supporting Information.

⁽⁶⁾ Koreeda, M.; Luengo, J. I. J. Am. Chem. Soc. 1985, 107, 5573. For a ccont application of this type of rearrangement, see: Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stolz, B. M.; Holubec, A. A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748.

⁽⁷⁾ Enholm, E. J.; Xie, Y. P.; Abboud, K. A. J. Org. Chem. 1995, 60,

^{1112.} Enholm, E. J.; Whitley, P. E. Tetrahedron Lett. 1995, 36, 9157. Enholm, E. J.; Whitley, P. E. Tetrahedron Lett. 1996, 37, 559. Enholm, E. J.; Whitley,

P. E.; Xie, Y. P. J. Org. Chem. 1996, 61, 5384.

⁽⁸⁾ See Supporting Information for an evaluation of these experiments. (9) Curran, D. P.; Porter, N. A.; Giese, B. *Stereochemistry of Radical* Reactions: Concepts, Guidelines, and Synthetic Applications; VCH: Weinheim, 1996; p 283

a related silyl ether analog¹⁰ starting from a 1/1 mixture of phenylseleno ketones **8b**. Reduction of this with Bu₃SnD provided silyl ether **7** as a 1/4 mixture of α/β stereoisomers (78%). Likewise, direct reduction of the alcohol **8a** followed by silylation gave a 1/4 mixture of isomers of **7** (82%). Thus, the reductions of radicals closely related to α -keto radical **4** are moderately stereoselective, with attack of tin deuteride cis to the oxygen atom on the stereocenter adjacent to the ketone.

These results do not support Enholm's radical-Claisen mechanism but are consistent with the stannyloxy-Claisen mechanism. However, it is conceivable (although unlikely) that the stannyl ether radical 4 could give a 1/1 selectivity even though the silyl ether and alcohol precursors did not. We addressed this issue by preparing the labile stannyl ether 9 in situ from 8a,¹¹ conducting the tin hydride reduction, and converting the crude product to the silyl ether 7 (eq 2). Again 7 was isolated as a 1/4 mixture of isomers (89%). Finally, it is also conceivable (although again unlikely) that the reduction of 4 by tin hydride is faster than a cyclohexane ring flip.¹² This raises the possibility that Claisen rearrangement of 3 or abstraction of phenylseleno groups from 8 or 9 could provide radicals 4 in different conformations. These could, in turn, react with different stereoselectivities. To rule out this possibility, we separated the diastereomers of 8b and reduced them independently; each gave the same 1/4 mixture of products **7** (78% from **8b** α , 69% from **8b** β). The α and β isomers of **8b** exist predominately in different chair conformations, so the observation that they give the same ratio of isomers shows that ring flipping of **4** is faster than its reduction by Bu₃SnH.

These stereochemical experiments at once refute the radical-Claisen mechanism while supporting the stannyloxy-Claisen mechanism. However, this strong evidence in support of Koreeda's stannyloxy-Claisen mechanism is contradicted by an equally strong piece of evidence in the original Enholm paper. Rearrangement of 1 in the presence of allyl stannane 10 was reported to provide 11α as a single stereoisomer through the mechansim shown in eq 3.13 In 1985, Koreeda had observed high stereoselectivity in his rearrangements, but the β -isomer was obtained exclusively. Thus, $\mathbf{11}\beta$ is the expected isomer in the reaction in eq 3, and the formation of 11α appears to be strong evidence in favor of the radical-Claisen mechanism. However, Enholm and co-workers did not cite this evidence, and in a footnote they commented that the configurational assignment of 11α was tentative. We have investigated this situation, and we now propose that the configurational assignment of 11α should be reversed.

(11) Jones, K.; Lappert, M. F. J. Chem. Soc. 1965, 1944.

Reported by Enholm (radical-Claisen mechanism)

Consistent with Enholm's results, upon reaction of 10 with 1, we obtained a single stereoisomer of **12** after silulation (40%). Its configurational assignment was indeed not straightforward since very few diagnostic cross-peaks were observed in its NOE spectrum. However, reaction of 8b with 10 now provided both diastereomers of 12 as a 1/1 mixture (80%). These were readily separated, and NOE experiments clearly showed that the new diastereomer was 12α . Accordingly, the structure obtained from the allylation experiments must be 12β . Once again, the stereochemical probes refute the radical-Claisen mechanism (because different ratios of $12\alpha/\beta$ are observed in the experiments in eq 3) and are fully consistent with the stannyloxy-Claisen mechanism (the expected single isomer 12β is formed from **8b** in eq 3). Accordingly, we propose that the reductive conversion of 1 to 2, and by extension all the related examples in Enholm's paper, occur by Koreeda's mechanism (eq 1): enone 1 is hydrostannated to provide intermediate 6, which then suffers rapid 3,3-sigmatropic rearrangement to give 5. That 6 cannot be observed (Enholm's results) suggests that it rearranges faster than it is formed. This requires a half-life of 6 on the order of minutes or less at 80 °C, which we feel is consistent with Koreeda's results for different but related enol derivatives.6

In summary, the reductive rearrangement of 1 to 2 does not occur through open-shell intermediates by a radical (or ketyl) accelerated Claisen rearrangement. Instead, closed-shell enol ether intermediates are generated by radical hydrostannation, and these undergo stannyloxy-accelerated Claisen rearrangements. Similar intermediates have previously been generated by deprotonation by Koreeda.⁶ That Enholm's reductive rearrangement does not occur by a radical-Claisen mechanism has no bearing on the obvious synthetic utility of this new process. Hydrometalation of enones has frequently been used in synthesis as a complementary strategy to deprotonation for the generation of enol intermediates, and in this sense Enholm's method is a powerful complement to Koreeda's for these types of transformations. The viability of radical- and radical-anion-accelerated sigmatropic rearrangements remains an open problem.

Acknowledgment. We thank the National Science Foundation for funding this work. Y.N. thanks JSPS for a postdoctoral fellowship.

Supporting Information Available: Experimental details and characterization of all reported products (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁰⁾ We choose to model the stannyl ether group with a silyl ether because stannyl ethers are hydrolytically sensitive and are difficult to form from tertiary alcohols. See: Davies, A. G. *Organotin Chemistry*; VCH: Weinheim, 1997; p 327. After many failures, the tin ether from **9** was ultimately generated in situ (see text). That it provides the same results as the silyl ether and alcohol supports the validity of this model.

⁽¹²⁾ For representative examples where the rates of radical reactions exceed those of relatively rapid conformation processes, see: (a) Snieckus, V.; Cuevas, J. C.; Sloan, C. P.; Liu, H.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 896. (b) Sauer, S.; Schumacher, A.; Barbosa, F.; Giese, B. Tetrahedron Lett. 1998, 39, 3685. (c) Buckmelter, A. J.; Powers, J. P.; Rychnovsky, S. D. J. Am. Chem. Soc. 1998, 120, 5589. (d) Musa, O. M.; Horner, J. H.; Newcomb, M. J. Org. Chem. 1999, 64, 1022.

⁽¹³⁾ It was also reported that reductive rearrangement of 2-allyloxy-3methylcyclohexenone provided the opposite stereosiomer, as would be expected from both the Enholm and Koreeda mechanisms.